
What I did to Adol-C and ISSM

Utke/Larour

Argonne National Laboratory
Jet Propulsion Laboratory

EuroAD - Dec/2013 Oxford, UK



outline

� what this is for

� changes in ISSM

� changes in Adol-C

� external solvers

� adjoinable MPI

� performance

Adolc/ISSM - Utke/Larour - Dec/2013 1



Greenland

Adolc/ISSM - Utke/Larour - Dec/2013 2



the North-Eastern Ice Stream on Greenland

� velocity field

� red boundary shows
domain of interest

� dots indicate observation
data

� surface observations by
satellite/stations

� drilling holes is expensive

� goal is model tuning for
prediction of sea level rise

Adolc/ISSM - Utke/Larour - Dec/2013 3



sensitivity studies - maximal velocity with respect to
Y

(k
m

)

 

 

a

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dV
max

/dH

1e−40

3.5e−27

1.2e−13

 

 

b

dV
max

/dS

1e−40

3.5e−27

1.2e−13

X(km)

Y
(k

m
)

 

 

c

1 2 3 4 5

x 10
5

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dV
max

/dB

1e−40

3.5e−27

1.2e−13

X(km)

 

 

d

1 2 3 4 5

x 10
5

dV
max

/dα

1e−40

3.5e−27

1.2e−13

� a: H - ice thickness

� b: S - surface elevation

� c: B - bed elevation

� d: α - friction coefficient

Adolc/ISSM - Utke/Larour - Dec/2013 4



sensitivity studies - volume with respect to
Y

(k
m

)

 

 

a

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dH

1.5e−05

0.00061

0.025

0.99

 

 

b

dVol/dS

1e−17

1e−11

1e−05

10 

X(km)

Y
(k

m
)

 

 

c

1 2 3 4 5

x 10
5

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dB

1e−17

1e−11

1e−05

10 

X(km)

 

 

d

1 2 3 4 5

x 10
5

dVol/dα

1e−17

1e−11

1e−05

10 

� a: H - ice thickness

� b: S - surface elevation

� c: B - bed elevation

� d: α - friction coefficient

Adolc/ISSM - Utke/Larour - Dec/2013 5



sensitivity studies (last week) - volume with respect to
Y

(k
m

)

 

 

a

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dH

4.2e−05

0.0012

0.033

0.91

 

 

b

dVol/dS

1e−17

1e−11

1e−05

10 

X(km)

Y
(k

m
)

 

 

c

1 2 3 4 5

x 10
5

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dB

1e−17

1e−11

1e−05

10 

X(km)

 

 

d

1 2 3 4 5

x 10
5

dVol/dα

1e−17

1e−11

1e−05

10 

� a: H - ice thickness

� b: S - surface elevation

� c: B - bed elevation

� d: α - friction coefficient

compared to earlier studies
ran in higher resolution on
Pleiades for longer model time

Adolc/ISSM - Utke/Larour - Dec/2013 6



sensitivity studies - volume above floatation with respect to
Y

(k
m

)

 

 

a

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dH

0

0.5

1

 

 

b

dVol/dS

0

0.02

0.04

0.06

X(km)

Y
(k

m
)

 

 

c

1 2 3 4 5

x 10
5

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dB

−1

−0.5

0

X(km)

 

 

d

1 2 3 4 5

x 10
5

dVol/dα

1.9e−08

1.2e−05

0.008

5.2

� a: H - ice thickness

� b: S - surface elevation

� c: B - bed elevation

� d: α - friction coefficient

Adolc/ISSM - Utke/Larour - Dec/2013 7



model-to-observation misfit of S to internal state

� with respect to friction
coefficients

� L2 integrated over time

� yellow lines indicate
gradient sign switch

� part of an gradient →
line search optimization
loop

Adolc/ISSM - Utke/Larour - Dec/2013 8



model-to-observation misfit of S to external boundary

� with respect to
snow-mass-balance

� snow fall given as
(external) reanalysis of
climate model runs

� hints at less snow fall on
the coast, more inland

� means to adapt
reanalysis if one assumes
the ice sheet model is
“correct”

presented at AGU meeting

Adolc/ISSM - Utke/Larour - Dec/2013 9



ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - Dec/2013 10



ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - Dec/2013 10



ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - Dec/2013 10



ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - Dec/2013 10



ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - Dec/2013 10



ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - Dec/2013 10



ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - Dec/2013 10



ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - Dec/2013 10



AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer categorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - Dec/2013 11



AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer categorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - Dec/2013 11



AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer categorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - Dec/2013 11



AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer categorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - Dec/2013 11



AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer categorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - Dec/2013 11



AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer categorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - Dec/2013 11



AdolC-ify ISSM (2)

& change Adol-C

� pick a simple(!) setup to start with and establish consistency
with FD tests

� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:

� the forward variants passed only ẋ, ẏ and not x, y themselves
=⇒ added

� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - Dec/2013 12



AdolC-ify ISSM (2)

& change Adol-C

� pick a simple(!) setup to start with and establish consistency
with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping

� Adol-C has had an ”external” interface for func(x,y) all
along but:

� the forward variants passed only ẋ, ẏ and not x, y themselves
=⇒ added

� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - Dec/2013 12



AdolC-ify ISSM (2)

& change Adol-C

� pick a simple(!) setup to start with and establish consistency
with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:

� the forward variants passed only ẋ, ẏ and not x, y themselves
=⇒ added

� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - Dec/2013 12



AdolC-ify ISSM (2) & change Adol-C
� pick a simple(!) setup to start with and establish consistency

with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:
� the forward variants passed only ẋ, ẏ and not x, y themselves

=⇒ added

� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - Dec/2013 12



AdolC-ify ISSM (2) & change Adol-C
� pick a simple(!) setup to start with and establish consistency

with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:
� the forward variants passed only ẋ, ẏ and not x, y themselves

=⇒ added
� added sanity checks for consecutive locations

� the forward/reverse handlers taped/restored x, y values
whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - Dec/2013 12



AdolC-ify ISSM (2) & change Adol-C
� pick a simple(!) setup to start with and establish consistency

with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:
� the forward variants passed only ẋ, ẏ and not x, y themselves

=⇒ added
� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - Dec/2013 12



AdolC-ify ISSM (2) & change Adol-C
� pick a simple(!) setup to start with and establish consistency

with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:
� the forward variants passed only ẋ, ẏ and not x, y themselves

=⇒ added
� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - Dec/2013 12



AdolC-ify ISSM (2) & change Adol-C
� pick a simple(!) setup to start with and establish consistency

with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:
� the forward variants passed only ẋ, ẏ and not x, y themselves

=⇒ added
� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - Dec/2013 12



AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by KK)

� overhead?

Adolc/ISSM - Utke/Larour - Dec/2013 13



AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by KK)

� overhead?

Adolc/ISSM - Utke/Larour - Dec/2013 13



AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by KK)

� overhead?

Adolc/ISSM - Utke/Larour - Dec/2013 13



AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor

� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by KK)

� overhead?

Adolc/ISSM - Utke/Larour - Dec/2013 13



AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration

� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by KK)

� overhead?

Adolc/ISSM - Utke/Larour - Dec/2013 13



AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by KK)

� overhead?

Adolc/ISSM - Utke/Larour - Dec/2013 13



AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by KK)

� overhead?

Adolc/ISSM - Utke/Larour - Dec/2013 13



AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:
� originated with more recent location management

� set of fixes (partially by my, partially by KK)

� overhead?

Adolc/ISSM - Utke/Larour - Dec/2013 13



AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:
� originated with more recent location management
� set of fixes (partially by my, partially by KK)

� overhead?

Adolc/ISSM - Utke/Larour - Dec/2013 13



AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:
� originated with more recent location management
� set of fixes (partially by my, partially by KK)

� overhead?

Adolc/ISSM - Utke/Larour - Dec/2013 13



AdolC-ified ISSM performance - overloading (1)
pick some test case (here ”test109”), g++ -O2, initially horrible
timings fixed by another changeset to locations mgmt. from KK

Adolc/ISSM - Utke/Larour - Dec/2013 14



AdolC-ified ISSM performance - overloading (1)
pick some test case (here ”test109”), g++ -O2, initially horrible
timings fixed by another changeset to locations mgmt. from KK

Adolc/ISSM - Utke/Larour - Dec/2013 14



AdolC-ified ISSM performance - overloading (2)
less of a surprise once we look at the portions of runtime

Adolc/ISSM - Utke/Larour - Dec/2013 15



AdolC-ified ISSM performance - overloading (2)
less of a surprise once we look at the portions of runtime

Adolc/ISSM - Utke/Larour - Dec/2013 15



AdolC-ified ISSM performance - tracing & reverse (1)

using ”test3019” - an AD-enabled regression test

Adolc/ISSM - Utke/Larour - Dec/2013 16



AdolC-ified ISSM performance - tracing & reverse (1)

using ”test3019” - an AD-enabled regression test

Adolc/ISSM - Utke/Larour - Dec/2013 16



AdolC-ified ISSM performance - tracing & reverse (2)

using ”test3019” - an AD-enabled regression test

heavily skewed in Adol-C’s advantage because of GSL

Adolc/ISSM - Utke/Larour - Dec/2013 17



AdolC-ified ISSM performance - tracing & reverse (2)

using ”test3019” - an AD-enabled regression test

heavily skewed in Adol-C’s advantage because of GSL

Adolc/ISSM - Utke/Larour - Dec/2013 17



AdolC-ified ISSM performance - tracing & reverse (2)

using ”test3019” - an AD-enabled regression test

heavily skewed in Adol-C’s advantage because of GSL

Adolc/ISSM - Utke/Larour - Dec/2013 17



departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib (w Laurent & Michel)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� fake MPI implementation uses memcpy or adouble assignments
resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - Dec/2013 18



departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib (w Laurent & Michel)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� fake MPI implementation uses memcpy or adouble assignments
resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - Dec/2013 18



departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib (w Laurent & Michel)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� fake MPI implementation uses memcpy or adouble assignments
resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - Dec/2013 18



departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib (w Laurent & Michel)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� fake MPI implementation uses memcpy or adouble assignments
resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - Dec/2013 18



departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib (w Laurent & Michel)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� fake MPI implementation uses memcpy or adouble assignments
resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - Dec/2013 18



departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib (w Laurent & Michel)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� fake MPI implementation uses memcpy or adouble assignments
resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - Dec/2013 18



departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib (w Laurent & Michel)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� fake MPI implementation uses memcpy or adouble assignments
resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - Dec/2013 18



departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib (w Laurent & Michel)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� fake MPI implementation uses memcpy or adouble assignments
resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - Dec/2013 18



departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib (w Laurent & Michel)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� fake MPI implementation uses memcpy or adouble assignments
resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - Dec/2013 18



Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas’ favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - Dec/2013 19



Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas’ favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - Dec/2013 19



Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas’ favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade

� (ii) reluctant to add a 5th stack for MPI parameters with
opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - Dec/2013 19



Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas’ favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack

� problem with the above is loss of self-containedness of the
trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - Dec/2013 19



Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas’ favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.

� general problems with (re)storing blobs are related to
(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - Dec/2013 19



Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas’ favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects

� covers all interfaces needed by ISSM (reductions,
gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - Dec/2013 19



Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas’ favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)

� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - Dec/2013 19



Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas’ favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers

� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - Dec/2013 19



Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas’ favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - Dec/2013 19



Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - Dec/2013 20



Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - Dec/2013 20



Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - Dec/2013 20



Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - Dec/2013 20



Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - Dec/2013 20



Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - Dec/2013 20



Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - Dec/2013 20



Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - Dec/2013 20



Adjoinable MPI in Adol-C and ISSM (2)

template the MPI logic with 2 parameters like this pattern

1 #include <iostream>
2 typedef int DataType;
3 class TypeInfo {
4 public:
5 static DataType ourDoubleType;
6 static DataType ourIntType;
7 };
8 DataType TypeInfo::ourDoubleType;
9 DataType TypeInfo::ourIntType;

10
11 template <class T, DataType ∗typeOfT p> class C {
12 public:
13 C(){};
14 ˜C(){};
15 void foo(T aT) { std::cout << aT << ” of type ” << ∗typeOfT p << std::endl; }
16 };
17
18 int main (void) {
19 TypeInfo::ourDoubleType=1;
20 TypeInfo::ourIntType=2;
21 C<double,&TypeInfo::ourDoubleType>().foo(2.0);
22 C<int,&TypeInfo::ourIntType>().foo(−1);
23 return 0;
24 }

not completed (yet) in ISSM

Adolc/ISSM - Utke/Larour - Dec/2013 21



wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:

� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran
� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - Dec/2013 22



wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:

� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran
� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - Dec/2013 22



wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters

� question whether to factorize again in the reverse sweep or
recover factors:

� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran
� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - Dec/2013 22



wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:
� generally - tradeoff fill-in for refactoring

� specifically - MUMPS can dump factors but is written in /
geared toward Fortran

� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - Dec/2013 22



wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:
� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran

� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - Dec/2013 22



wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:
� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran
� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - Dec/2013 22



wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:
� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran
� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - Dec/2013 22



AdolC-ified ISSM performance - tracing & reverse (1)

test3019 - with contiguous locations, 3-way parallel MUMPS

Adolc/ISSM - Utke/Larour - Dec/2013 23



AdolC-ified ISSM performance - tracing & reverse (2)

test3019 - with contiguous locations, 3-way parallel MUMPS

MUMPS is fast - more realistic picture

Adolc/ISSM - Utke/Larour - Dec/2013 24



AdolC-ified ISSM performance - tracing & reverse (2)

test3019 - with contiguous locations, 3-way parallel MUMPS

MUMPS is fast - more realistic picture

Adolc/ISSM - Utke/Larour - Dec/2013 24



AdolC-ified ISSM performance - tracing & reverse (3)

test3019 - with contiguous locations, 3-way parallel MUMPS

i.e. pretty nasty ... BUT

Adolc/ISSM - Utke/Larour - Dec/2013 25



AdolC-ified ISSM performance - tracing & reverse (3)

test3019 - with contiguous locations, 3-way parallel MUMPS

i.e. pretty nasty ... BUT

Adolc/ISSM - Utke/Larour - Dec/2013 25



AdolC-ified ISSM performance - outlook

since these tests happened

� identified location management as one of the culprits
=⇒ added some logic to constrain the effort in consolidating
the locations pool

� replaced dense (outside of MUMPS) matrix representation
with a sparse format

� will need a new set of timing tests soon

current status:

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric L.: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - Dec/2013 26



AdolC-ified ISSM performance - outlook

since these tests happened

� identified location management as one of the culprits
=⇒ added some logic to constrain the effort in consolidating
the locations pool

� replaced dense (outside of MUMPS) matrix representation
with a sparse format

� will need a new set of timing tests soon

current status:

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric L.: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - Dec/2013 26



AdolC-ified ISSM performance - outlook

since these tests happened

� identified location management as one of the culprits
=⇒ added some logic to constrain the effort in consolidating
the locations pool

� replaced dense (outside of MUMPS) matrix representation
with a sparse format

� will need a new set of timing tests soon

current status:

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric L.: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - Dec/2013 26



AdolC-ified ISSM performance - outlook

since these tests happened

� identified location management as one of the culprits
=⇒ added some logic to constrain the effort in consolidating
the locations pool

� replaced dense (outside of MUMPS) matrix representation
with a sparse format

� will need a new set of timing tests soon

current status:

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric L.: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - Dec/2013 26



AdolC-ified ISSM performance - outlook

since these tests happened

� identified location management as one of the culprits
=⇒ added some logic to constrain the effort in consolidating
the locations pool

� replaced dense (outside of MUMPS) matrix representation
with a sparse format

� will need a new set of timing tests soon

current status:

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric L.: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - Dec/2013 26



AdolC-ified ISSM performance - outlook

since these tests happened

� identified location management as one of the culprits
=⇒ added some logic to constrain the effort in consolidating
the locations pool

� replaced dense (outside of MUMPS) matrix representation
with a sparse format

� will need a new set of timing tests soon

current status:

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric L.: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - Dec/2013 26



AdolC-ified ISSM performance - outlook

since these tests happened

� identified location management as one of the culprits
=⇒ added some logic to constrain the effort in consolidating
the locations pool

� replaced dense (outside of MUMPS) matrix representation
with a sparse format

� will need a new set of timing tests soon

current status:

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric L.: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - Dec/2013 26



AdolC-ified ISSM performance - outlook

since these tests happened

� identified location management as one of the culprits
=⇒ added some logic to constrain the effort in consolidating
the locations pool

� replaced dense (outside of MUMPS) matrix representation
with a sparse format

� will need a new set of timing tests soon

current status:

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric L.: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - Dec/2013 26



AdolC-ified ISSM performance - outlook

since these tests happened

� identified location management as one of the culprits
=⇒ added some logic to constrain the effort in consolidating
the locations pool

� replaced dense (outside of MUMPS) matrix representation
with a sparse format

� will need a new set of timing tests soon

current status:

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric L.: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - Dec/2013 26


	outline
	Greenland
	ISSM
	AMPI

